Proposal on Measuring Bubble Formation in Liquid Metals

Don Cowgill and Rion Causey Sandia National Laboratories Livermore, CA 94550

PSI/ALPS Meeting, Oakbrook Ill. Nov. 17-20, 2003

Experimental Goals:

- Test the Bubble Evolution model for He in liquid metals
- Benchmark the code at low flux
- Look for bubble effects on H-trapping

We propose an experiment to quantify the He dynamically retained within the liquid metal.

• Sandia's modified Nano-Bubble Evolution code (NBE-L) predicts: Liquid Ga or Sn at 600 K, exposed to a He flux of 10 mA/cm²,

will retain 10^{14} - 10^{15} He/cm² in bubbles within 1-2 µm deep.

- This concentration should be present in steady-state.
- It can be measured
 - by ${}^{3}\text{He}(d,p){}^{4}\text{He NRA}$
 - by He Re-emission.
- If bubbles are not present, the concentration will be low; and measurements will yield the effective He diffusivity.

He Depth Profiling Experiments will use SNL-CA's shielded deuteron accelerator facility.

- Penning trap produces flux of 10²¹ He/m²-s at 1 keV.
- Liquid Ga or Sn (1 cm²) covers trap (cathode) plate.
- ³He added to plasma is profiled in LiqM by d⁺ beam.
- High steady-state retention will signify bubble formation.
- Temperature dependence of retention will be compared with the code.

He Re-emission Experiments will determine the quantity of He in nano-bubbles by desorption.

- It uses a small volume (35 cc), getter-pumped He Penning discharge with Liquid Metal cathodes.
- The discharge is stabilized in steady-state, where re-emission rate = implant rate, then isolated.
- The quantity of He in the LiqM is determined from the pressure rise after the discharge is terminated.
- Compare liquid with solid.

Quantity in film $\approx 5 \times 10^{14}$ He Quantity in gas phase $\approx 1 \times 10^{16}$ He $\Delta P/P \approx .05$

Barotron sensitivity, $\Delta P/P = .0001$

Equipment and funding requested:

- No new equipment is needed.
 - Magnet and power supplies are available.
 - Penning chamber and electrode assemblies will be fabricated.
- Unique accelerator facility can measure ³He or D.
 - For ³He-⁴He plasma: ³He conc. and profile by ³He(d,p)⁴He
 - For He-D plasma: D conc. and profile by D(³He,p)⁴He (Can also examine potential D-trapping in He-filled bubbles.)
- Requested funding for Sandia staff: \$30k

